تثبیت شیمیایی باطله های صنایع روی با استفاده از افزودنی های آهک، گل قرمز، سیمان و سرباره ذوب آهن

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه مهندسی محیط زیست و پایش آلاینده ها، پژوهشکده محیط زیست و ‏توسعه پایدار، سازمان حفاظت محیط زیست، تهران، ایران

2 گروه محیط زیست انسانی، دانشکده محیط زیست، کرج، ایران

چکیده

با هدف کاهش حلالیت فلزات نیکل، کادمیم، سرب، روی و کبالت باطله فیلتر کیک حاصل از فرآوری روی، نمونه­ای از باطله­های مذکور از محل انباشت در استان زنجان جمع­آوری شدند. خصوصیات شیمیایی آن­ها با استفاده از آنالیزهای XRF و XRD اندازه­گیری شدند. سپس، این باطله­ها با تثبیت کننده­های آهک، گل قرمز، سیمان و سرباره ذوب آهن (GGBFS) به ترتیب با درصدهای 0-10%، 0-3%، 0-2% و 0-6% نمونه مخلوط شدند. به منظور بررسی میزان کاهش حلالیت عناصر فلزی، فرآیند عصاره­گیری از نمونه­ها با محلول 05/0 مولار EDTA انجام گرفت و عناصر فلزی این عصاره­ها با جذب اتمی اندازه­گیری شدند. نتایج نشان می­دهد نمونه­هایی که با ترکیبی از هر دو تثبیت­کننده آهک و گل­قرمز ساخته شده­اند، میزان حلالیت همه فلزات به جز سرب را 45 تا 50 درصد کاهش داده است. مقایسه طیف XRD نمونه شاهد و نمونه تثبیت یافته نشان می­دهد که فرم سولفاتی PbSO4 نمونه شاهد، به فرم کربناتی PbCO3 در نمونه حاوی آهک و گل قرمز که دارای حلالیت بیشتری می­باشد تغییر یافته است. این تغییر عامل اصلی افزایش حلالیت سرب (87%) در این نمونه­ها بوده است. سیمان و سرباره مؤثرترین افزودنی در کاهش حلالیت سرب در فیلتر کیک، بوده­اند. مطابق با طیف XRD، فرم PbSO4 در نمونه شاهد، پس از اختلاط با سیمان و سرباره به­طور قابل توجهی (100%) کاهش یافته است که این مهم، دلیل کاهش حداکثری حلالیت سرب قابل استخراج در نمونه بوده است.

کلیدواژه‌ها


  1. اوحدی، ح.، امیری م. و اوحدی، م.، 1394. بررسی ریزساختاری نگه داشت آلاینده فلز سنگین سرب در فرآیند تثبیت و جامدسازی با بنتونیت و سیمان نشریه زمین شناسی مهندسی، جلد نهم، شمارۀ
  2. حمیدوند، ف.، رحمانی، م.، شیردم، ر. و نعیمی جوینی، م. 1399. بررسی غلظت فلزات سنگین سرب، نیکل و روی در بافت عضله، کبد، آبشش و کلیه ماهی سفید استانهای گیلان و مازندران، مطالعات علوم محیط زیست، دوره پنجم، شماره سوم، فصل پاییز، صفحات 2741 تا 2747.
  3. دهقان، ر.، رفیعی­پور، ا. و نژادسجادی، س.ح. 1398. سنجش غلظت فلزات سنگین جیوه، سرب و کادمیوم درعضله ماهی‌های هوور، شیر و تیلاپیا در شهرستان جیرفت. دوره 5، شماره 1، صفحات 21 تا 30.
  4. عسکری­ساری، ا.، حسینی­نژاد، س.، چله­مال دزفول ‌نژاد، م.، و ولایت زاده، م. 1396. مطالعه اثر روش­های پخت بر غلظت عناصر ضروری نیکل، روی، مس و آهن در ماهی کپور معمولی پرورشی. دوره 7 شماره 3. صفحات 61 تا 76.
  5. Abdel-Kader, N.H., Shahin, R.R. and Khater, H.A. 2013, Assessment of Heavy Metals Immobilization in Artificially Contaminated Soils Using Some Local Amendments, Open Journal of Metal,, 3, pp: 68-76.
  6. Alibrahimand, Z.O. and Williams, C.D. 2016. Assessment of bioavailability of some potential toxic metalsin mining-affected soils using EDTA extraction and principle component analysis (PCA) approach, Derbyshire, UK. Interdiscip J Chem, olume 1(2): 58-65. Doi: 10.15761/IJC.1000110.
  7. Al-Yamini, M.N. 2011. Sher H. El-Sheikh MA. Eid EM. Bioaccumulation of nutrient and heavy metals by Calotropis procera and Citrullus colocynthis and their potential use as contamination indicators, Academic Journals, Vol. 6 (4), P. 966-976.
  8. Bellassoued, K., Hamza, A., Pelt, J.V. and Elfeki, A. 2013. Seasonal variation of Sarpa salpa fish toxicity, as related to phytoplankton consumption, accumulation of heavy metals, lipids peroxidation level in fish tissues and toxicity upon mice, Environmental Monitoring and Assessment, Vol. 185, P. 11371150.
  9. Blight, G. E. 2010. Geotechnical Engineering for Mine Waste Storage Facilities, (London: CRC Press, Taylor & Francis.)
  1. Brown, S., Christensen, B. and Lombi, E. 2005. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environ. Pollut. 138; pp: 34–45.
  2. Cheney, R.L. and Oliver D.P. 1996. Sources, potential adverse effects and remediation of agricultureal soil contaminants. [in:] Contaminants and the soil environment in the Australasia-Pacific Region. Proc. First Australasia-Pacific Conference on Contaminants and Soil Environment in the Australasia- Pacific Region, Adelaid, pp: 323-359.
  3. Gray .C.W., Dunham S.J., Dennis P.G., Zhao F.J. and McGrath S.P., 2006, Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud, Environmental Pollution, 142 (3), pp: 530-539. https://doi.org/10.1016/j.envpol.2005.10.017.
  4. Gul, S., Naz, A., Fareed, I. and Irshad, M. 2015. Reducing Heavy Metals Extraction from Contaminated Soils Using Organic And Inorganic Amendments-A Review, Pol. J. Environ. Stud. Vol24, No. 3, pp: 1423-1426.
  5. Hamidvand, F., Rahmani, M. R., Shirdam, R., Naeimi Joveini, M., 2020, Study of lead, nickel and zinc heavy metals concentration in muscle, liver, gill, and kidney of Caspian kutum (Rutilus frisii kutum) in Guilan and Mazandaran provinces,
  6. Lu, A., Zhang, S., and Shan, X.Q. 2005. Time effect on the fractionation of heavy metals in soils. Geoderma, 125. pp: 225-234.
  7. Ma, L.Q., Angela, L. and Rao, G.N., 1997. Effect of incubation and phosphate rock on lead extractability and speciation in contaminated soils. J. Environ. Qual., 26. pp: 801-807.
  8. Malvandi, H., Hassanzadeh, N. 2019. Potential ecological risk assessment of heavy metal contamination in surface sediment of the Siahrood River, Mazandaran province, Iranian Journal of Research in Environmental Health, Vol. 5 (3), pp: 217-229.
  9. Manouchehri, N. and Bermond, A. 2009. EDTA in soil science: A review of its application in soil trace metal studies, Terrestrial and aquatic environmental toxicology, Global science books.
  10. Moraghan, J.T. and Mascani, H.J. 1991. Environmental and soil factor affecting micronutrients deficies and toxicities. [in:] Micronutrients in agriculture, SSSA, Madison, WI, pp: 371-413.
  11. Morel, J.L. 1997. Bioavailability of trace elements terrestrial plants.[in:] Soil ecotoxicology, Lewis Publisher, Boca Raton, FL, pp: 141-176.
  12. Priya Gadepalle, V., Ouki, S.K., Van Herwijnen, R. and Hutchings, T. 2007. Immobilization of Heavy Metals in Soil Using Natural and Waste Materials for Vegetation Establishment on Contaminated Sites, Soil & Sediment Contamination, 16. pp: 233–251.
  13. Salmanzadeh, M., Saeedi, M., Li. L.Y. and Nabi-Bidhendi, Gh. 2015 Characterization and metals fractionation of street dust samples from Tehran, Iran, Int. J. Environ. Res, 9(1). pp: 213-224.
  14. Sarsby, R.W. 2013. Environmental Geotechnics, 2nd Edition, Published by ICE Publishing.
  15. Shirdam, R., 2022. Geotechnical Investigation of Tailings Disposal Site for Tailings Storage of zinc Processing Factory, Pollution 2022, 8(1). pp: 1-14.
  16. Shirdam, R., Modarres-Tehrani, Z. and Dastgoshadeh, F. 2008. Microwave assisted digestion of soil, sludge and sediment for determination of heavy metals with ICP-OES and FAAS, Rasayan J. Chem., Volume 1, Pages pp: 757-765.
  17. Shirdam, R., Sadeghi, B., Rezaei Rad, M., Bakhshi, N. and Mirzaei, H.A. 2021. Reusing red mud waste and low grade bauxite as raw materials for brick manufacturing by experimental design technique, Int. J. Environment and Waste Management, Vol. 27, No. 1, 2021.
  18. Shirdam, R., Shirka, A., Hassan Oghli, S. and Bakhshi, N. 2016. The Effect of Red mud and Blast Furnace Slag on Compressive Strength of High Strength Concrete (HSC), 5th National Conference and 1st International Conference On Modern Material and Structure in Civil Engineering, AmirKabir University, Tehran, Iran.
  19. Shirdam, R., Shirka, A., Hassanoghli, S. and Bakhshi, N. 2020. Investigating the effects of red mud and GGBFS industrial waste on the compressive strength of high-strength green concrete, Environmental Sciences, Vol.17/ No.4 /winter 2020, P. 151-162.http://envs.sbu.ac.ir/article/view/26673
  20. Shreekant, R.L., Mangalpady, A. and Harsha, V. 2016. Utilisation of mine waste in the construction industry - A Critical Review, International of Earth Science and Engineering, 9(1), pp: 182-195.
  21. Ure, A.M. 1996. Single extraction schemes for soil analysis and related applications, The Science of the Total Environment 178, pp: 3 -10.
  22. U.S. Environmental Protection Agency (USEPA), Method 3050B. 1996. Test methods for Acid Digestion of Sediments, sludges and soils.
  23. U.S. Environmental Protection Agency (USEPA) Method 7010B. 2007. Graphite Furnace Atomic Absorption Spectrophotometry.
  24. Wang J.X., Xu D.M, Fu R.B. and Chen J.P. 2021. T, Bioavailability Assessment of Heavy Metals Using Various Multi-Element Extractants in an Indigenous Zinc Smelting Contaminated Site, Southwestern China, Int. J. Environ. Res. Public Health 2021, 18, 8560. https://doi.org/10.3390/ijerph18168560.
  25. Wuana, R.A. and Okieimen, F.E. 2011. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation, ISRN Ecology.
  26. Yi, Y.J., Zhang, S.H. 2007. The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River, Procedia Environmental Sciences, Vol. 13, pp: 1699-1707.
  27. Zimmerman A.J. and Weindorf D. C., 2010. Heavy Metal and TraceMetal Analysis in Soil by Sequential Extraction: A Review of Procedures, Hindawi Publishing Corporation International Journal of Analytical Chemistry Volume, Article ID 387803, 7 pages.