Document Type : Review Article

Authors

1 Department of Chemical Industry, Technical and Vocational University (TVU), Tehran, Iran

2 Department of Environment, Niroo Research Institute (NRI), Tehran, Iran

Abstract

Nitrogen oxides are one of the most important pollutants in the air, which releasing into the atmosphere causes to produce of dangerous secondary pollutants. Identifying the various methods of reducing this pollutant in the chimney is an important guide for choosing an effective method to achieve the desired level of this pollutant according to the type of industry for experts. In this paper, methods for reducing nitrogen oxides in flue gas flow are reviewed. These methods include chemical processes such as plasma and non-plasma oxidation by an oxidizing agent, catalytic and non-catalytic reduction, electron irradiation, biological process, and physical adsorption processes on the surface. These methods separate nitrogen oxide from a gaseous stream and convert it into inert materials. These methods are very effective for industries that use old technologies and are highly polluting. The main technologies introduced in this article are among the four main methods with developed technology or they are close to development and can be used in Iranian industries.

Keywords

Main Subjects

  1. آناقیزی، ج، طالبی زاده، پ، میرپور ش، رحیم زاده ح، قمی ح.، 1392. طیف سنجی نوری راکتور پلاسمای سرد کاهنده غلظت گازهای آلاینده سمی NOx، بیستمین کنفرانس اپتیک و فوتونیک ایران، شیراز.
  2. کمیلی، س، مصطفایی ع، جلالی لیچایی م، 1397. روش­های کاهش اکسیدهای نیتروژن در محفظه احتراق، فصلنامه علمی محیط زیست و توسعه فرابخشی، دوره 3، شماره 61، صفحه 11 تا 24.
  3. Ando, J., 1989. Review of Japanese NOx control technology for stationary sources, T. Schneider and L. Grant (Editors), Air Pollution by Nitrogen Oxide, Elsevier Scientific Publishing Company. Vol. 21, pp: 699-714.
  4. Anonymous, 2016. Energy and air pollution, iea.org.
  5. Anonymous, 1999. EPA technical report, Nitrogen Oxides (NOx), Why and How They Are Controlled, EPA-456/F-99-006R.
  6. Basfar, A.; Osama, I.F.; Kunnummal, N.; Chmielewski, A.G.; Licki, J.; Pawelec, A.; Zimek, Z. and Warych, J., A review on electron beam flue gastreatment (EBFGT) as a multicomponent air pollution control technology. Nukleonika. Vol.55, No. 3, pp: 271−277.
  7. Bruce, W.L., Feeley, T., Murphy, J. and Green, L., 2005. A Review of DOE/NETL's Advanced NOx Control Technology R&D Program for Coal-Fired Power Plants, Project report, DOE/NETL NOx R&D Program Review.
  8. Crippa, ; Maenhout, G.; Dentener, F.D.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R. and Granier, C., 2016. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts, Atmos. Chemical Physics. Vol. 16, pp: 3825–3841.
  9. Gholami, F.; Tomas, M.; Gholami, Z. and Vakili, M., 2020. Technologies for the nitrogen oxides reduction from flue gas: A review, Science of the Total Environment.vol. 714, 136712.
  10. Li, G.; Wang, B.; Xu, W.Q.; Li, Y.; Han, Y. and Sun, Q., 2019. Simultaneous removal of SO2 and NOx from flue gas by wet scrubbing using a urea solution. Environmental Technology. Vol. 40, No. 20, pp: 2620-2632.
  11. Richards, J.R., 2000. Control of Nitrogen Oxides Emissions, EPA Contract No. 68D99022.
  12. Si, M.; Shen, B.; Adwek, G.; Xiong, L.; Liu, L.; Yuan, P.; Gao, H.; Liang, C. and Guo, O., 2021. Review on the NO removal from flue gas by oxidation methods.  Journal of Environmental Sciences. Vol. 101, pp: 49–71.
  13. Skalska, K.; Miller, J.S. and Ledakowicz, S., 2010. Trends in NOx abatement: A review. Science of the Total Environment. Vol. 408, pp: 3976–3989.
  14. Stratos, T.E. and Jozewicz, W., 2005. Multipollutant Emission Control Technology Options for Coal-fired Power Plants, EPA-600/R-05/03.
  15. Wang, Y.; Chen, B.; Zhu, Y.; Fu, L.; Wu, Y. and van Ree, T., 2018. Metal Oxides in Energy Technologies. Elsevier. pp: 341–360.
  16. Yeh, S.; Rubin, E.S.; Taylor, M.R. and Hounshell, D.A., 2005. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies. Journal of the Air & Waste Management Association. Vol. 55, pp: 1827-1838.