Document Type : Original Article

Authors

1 Department of Environmental Sciences, Faculty of Natural Resources and Environment, Malayer University, Hamedan, Iran.

2 Department of Urban Planning, Tehran University of Art, Tehran, Iran

Abstract

Urban is a unique and inconsistently defined land cover including green and grey infrastructures. Tree covers that can store large stocks of carbon. There are several ways to estimate a tree's CO2 sequestration. In this study, Google Earth images were used for mapping tree covers in the Hamadan urban scale with an area of 7422 hectares. First, a 50-meter buffer was applied on two sides of the main streets. Then, it was classified into three groups called high, medium, and low density based on the percentage of greenery. In each group, the information of 265 trees (the total of 800 trees) were recorded randomly such as allometric data and canopy diameter of trees. An Object-Oriented approach was applied to extract the area and canopies of individual urban trees. The total number of trees and their location were estimated by dividing the total of trees canopy by the average of the individual urban trees canopy. Allometric equations were used to estimate the dry biomass of tree species. Based on the results, the main species in the study area include maple, black locust, sycamore, manna ash, cypress, fir tree, and elm. The average amount of organic carbon stored in individual and street trees with asphalt and cobblestone pavement is estimated to be about 88.29 kg, which differs significantly from those with the surface covered by soil and grass (an average value of 148.79 kg). In total, the amount of organic carbon stored by Hamadan urban trees is estimated to be 1.6 tons per hectare.

Keywords

Main Subjects

  1. حیدری، ا.، ایران منش، ی. و رستمی شاهراجی، ت. 1395. اندوخته کربن روی زمینی و خاک کبوده (Populus alba L) در فاصله کاشت­های مختلف در استان چهارمحال و بختیاری. تحقیقات جنگل و صنوبر ایران، دوره 24، شماره 2، صفحات: 213-200.
  2. حیدریان، ش. و قاسمی آقباش، ف. 1399. بررسی ترسیب کربن پوشش درختی و خاک در دو پارک شهری کوهدشت. علوم و تکنولوژی محیط زیست،دوره 22 ،شماره1، صفحات: 225-216.
  3. رئیسی، م.، قادرزاده، ح.، ساعدپناه، م. و مرادی، ا. 1398. ذخیره­سازی کربن در پارک جنگلی آبیدر سنندج. نشریه علمی تحقیقات جنگل و صنوبر ایران،دوره 27، شماره3، صفحات: 376-364.
  4. سهرابی، ه. و شیروانی، ا. 1391. معادلات آلومتریک برای برآورد زیتودة روی زمین بنه (Pistacia atlantica var. mutica) در پارک ملی خجیر. مجلة جنگل ایران، انجمن جنگلبانی ایران، دوره4، شماره،1، صفحات : 64-55.
  5. صادقی کاجی، ح.، گراوند، س. و ظفریان، ا. 1395. تحلیل اریبی برآوردکنندة تغییریافتة روش چنددرختی در محاسبة تعداد در هکتار و درصد تاج پوشش در جنگل‌های زاگرس. مجله جنگل ایران، انجمن جنگلبانی ایران، دوره 8، شماره 5، صفحات: 293-280.
  6. عرفانی فرد، س.ی. و موصلو، م. 1392. ارزیابی روش های اندازه گیری تاج درختان شاخه زاد در جنگل های زاگرس با استفاده از تصاویر هوایی UltraCam-D. نشریه جنگل و فرآورده های چوب، مجله منابع طبیعی ایران. 66(4): 426-414.
  7. واحدی، ع. و متاجی، ا. 1394. بررسی امکان برآورد ترسیب کربن تنة درختان راش شرقی (Fagus orientalis L) در جنگلهای هیرکانی با استفاده از روش­های غیرتخریبی. مجلۀ جنگل ایران، انجمن جنگلبانی ایران،دوره شماره 7،4، صفحات: 458-447.
  8. ورامش، س.، حسینی، س. م. و عبدی، ن. 1390. برآورد نیروی جنگل شهری در ترسیب کربن اتمسفری. محیط‌شناسی، دوره 37، شماره 57، صفحات: 120-113.
  9. Atsbha, T., Belayneh, A., Zewdu, T., 2019. Carbon sequestration potential of natural vegetation under grazing influence in Southern Tigray, Ethiopia: implication for climate change mitigation. Heliyon. Vol 5(8).
  10. Baes, C.F., H.E. Goeller, J.S. Olson, and Rotty, R.M., 1977. Carbon dioxide and climate: The uncontrolled experiment. Am. Sci., vol 65, pp: 310–320.
  11. Boiri Monji, A., Iranmanesh, Y., Jafari, A., Jahanbazi Goujani, H., 2020. Non-destructive derivation of biomass and carbon stock of wild pistachio (Pistacia atlantica Desf.). Iranian Journal of Forest and Poplar Research.vol 28(2), pp: 204-216 (In Persian).
  12. Bolund, P., and Hunhammar S., 1999. Ecosystem Services in Urban Areas. Edited by Robert Costanza. Ecological Economics. Vol 29 (2), pp: 293–301.
  13. Breu, F., Guggenbichler, S., Wollmann, J., 2012. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Vasa.
  14. Briber BM, Hutyra LR, Dunn AL, Raciti SM, Munger J.W., 2013. Variations in atmospheric CO2 and carbon fluxes across a Boston, MA urban gradient. Land, vol 2(3), pp: 304–27.
  15. Bühler O, Kristoffersen P, Larsen S., 2007. Growth of Street Trees in Copenhagen with Emphasis on the Effect of Different Establishment Concepts. Arboriculture and Urban Forestry.vol 33.
  16. Bunce, R. G. H., 1968. Biomass and production of trees in a mixed deciduous woodland: I. Girth and height as parameters for the estimation of tree dry weight. Journal of Ecology, vol 56(3), pp: 759–775.
  17. Butlin, T., Gill, S. and Nolan, P., 2015. An ecosystem services mapping method for use in green infrastructure planning. The Mersey Forest and the Green Infrastructure Think Tank, ISBN 978-0-9934267-0-4.
  18. Dahlhausen, J. Biber, P. Rötzer, T. Uhl, E. Pretzsch, H., 2016. Tree Species and Their Space Requirements in Six Urban Environments Worldwide. Forests, vol 7, p 111.
  19. Elmqvist, T., Setala, H., Handel, S.N., Ploeg, S., Aronson, J., Blignaut, J.N. Baggethun, E.G., Nowak, D.J., Kronenberg, J. and Groot, R., 2015. Benefits of restoring ecosystem services in urban areas, Current Opinion in Environmental Sustainability.vol 14, pp: 101–108.
  20. Ismail, W., Zuriea, W., Mat Naim, A., Adi Irfan, C., 2019. A review of factors affecting carbon sequestration at green roofs. Journal of Facilities Management, vol 17(1), pp: 76-89(14)
  21. Lawrence A.B., Escobedo F.J., Staudhammer C.L., Zipperer, W., 2012. Analyzing growth and mortality in a subtropical urban forest ecosystem. Landsc. Urban Plan, vol 104, pp: 85–94.
  22. LOPEZ, G. A. P.; SOUZA, L. C. L. de. 2018. Urban green spaces and the influence on vehicular traffic noise control. Ambiente Construído, Porto Alegre, vol 18(4), pp: 161-175.
  23. Malhi, Y. Baldocchi D.D. Jarvis P.G., 1999. The carbon balance of tropical, temperate and boreal forests, Plant Cell Environ, vol 22, pp: 715–740.
  24. McGovern, M., Pasher, J., 2016. Canadian urban tree canopy cover and carbon sequestration statusand change 1990–2012. Urban Forestry & Urban Greening, vol 20, pp: 227–232.
  25. Mitra, A., Sengupta, K., Banerjee, K., 2011. Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. Forest Ecology and Management, vol 261(7), pp: 1325–1335.
  26. Moulton, R.J., Richards, K.R., 1990. Costs of Sequestering Carbon through Tree Planting and Forest Management in the United USDA Forest Service, General Technical Report WO-58, Washington, DC.
  27. Nedkov, S., Zhiyanski, M., Nikolova, M., Gikov, A., Nikolov, P., Todorov, L., 2016. Mapping of carbon storage in urban ecosystems: A Case study of Pleven District, Bulgaria.
  28. Nowak D.J., 1993. Atmospheric carbon reduction by urban trees. Journal of Environmental Management. 37: 207-217.
  29. Nowak, D.J., Crane, D.E., 2002. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution. Vol 116(3), pp: 381-389.
  30. Nowak D.J., Greenfield, E.J., 2012. Tree and impervious cover change in US cities. Urban for Urban Green, vol 11(1), pp: 21–30.
  31. Nowak, D.J. Greenfield, E.J. Hoehn, R.E. Lapoint, E., 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Pollut. Vol 178, pp: 229–236.
  32. Oliver, G.R., Pearce, S.H., Kimberly, M.O., Ford-Robertson, J.B., Robertson, K.A., Beets, P.N., and Garrett L.G., 2004. Variation in soil carbon in pine plantations and implications for monitoring soil carbon stocks in relation to land-use change and forest site management in New Zealand. For. Ecol. Manage., vol 203, pp: 283–295.
  33. Peichl, M., and Arain, M.A., 2006. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forest, Agric. For. Meteorol, vol 140, pp: 51–63.
  34. Pilli, R., Anfodillo, T., and Carrer, M., 2006. Towards a functional and simplified allometry for estimating forest biomass. For. Ecol. Manage., vol 237, pp: 583–593.
  35. Quigley, M.F., 2004. Street trees and rural conspecifics: Will long-lived trees reach full size in urban conditions. Urban Ecosyst. Vol 7, pp: 29–39.
  36. Raciti, S.M. Hutyr, L.R., Newell, J.D., 2014. Mapping carbon storage in urban trees withmulti-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods. Science of the Total Environment vol 500–501, pp: 72–83.
  37. Schaffer, B., Brink, M., Schlatter, F., Vienneau, D., Wunderli, J.M., 2020. Residential green is associated with reduced annoyance to road traffic and railway noise but increased annoyance to aircraft noise exposure. Environment International, vol 143, pp: 105885.
  38. Snowdon, P., Raison, J., Keith, H., Ritson, P., Grierson, P., Adams, M., Montagu, K., Bi, H., Burrows, W., Eamus, D., 2002. Protocol for Sampling Tree and Stand Biomass. National carbon accounting system technical report No. 31.
  39. Strohbach, M.W. Arnold, E. Haase, D., 2012. The carbon footprint of urban green space—a life cycle approach. Landsc Urban Plan, vol 104, pp: 220-229.
  40. Strohbach, M.W. and Haase, D., 2012. Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc Urban Plan. Vol 104, pp: 95–104.
  41. Tang, Y.J. Chen, A.P. Zhao, S.Q., 2016. Carbon Storage and Sequestration of Urban Street Trees in Beijing, China. Front. Ecol. vol. 4, p 53.
  42. Vienneau, D., de Hoogh, K., Faeh, D., Kaufmann, M., Wunderli, J.M., Roosli, M., the SNC Study Group., 2017. More than clean air and tranquillity: residential green is independently associated with decreasing mortality. Environ. Int. vol 108, pp: 176–184.
  43. Yan, G., Xing, Y., Wang, J., Li, Z., Wang, L., Wang, Q., Xu, L., Zhang, Z., Zhang, J., Dong, X., Shan, W., Guo, L. and Han, S., 2018. Sequestration of atmospheric CO2 in boreal forest carbon pools in northeastern China: Effects of nitrogen deposition. Agricultural and Forest Meteorology, vol 248, pp: 70–81.
  44. Zhao, C. and Sander, H.A., 2015. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees. PLoS One, vol 10(8), p 31.