پیش‌بینی میزان انتشار CO2 در ایران با استفاده از شاخص‌های مهم اقتصادی و استفاده از مدل‌های یادگیری عمیق

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

گروه اقتصاد، دانشکده مدیریت و اقتصاد، دانشگاه شهید باهنر، کرمان

10.22034/envj.2022.149127

چکیده

افزایش انتشار گازهای گلخانه‌ای در سالیان اخیر باعث نگرانی‌های زیادی برای بسیاری از جوامع و دوستداران محیط‌زیست شده است؛ یکی از این گازهای گلخانه‌ای مهم، دی‌اکسید کربن (CO2) می‌باشد. در این پژوهش با استفاده از متغیرها و شاخص‌های مهم اقتصادی و مجموعه داده‌های سری زمانی سال 1970-2018 که آن‌ها را به 5 گروه مجزا به همراه یک گروه کل داده‌ها، تقسیم و به پیش‌بینی میزان انتشار CO2 در ایران پرداخته شد. برای این موضوع از مدل‌های یادگیری عمیق زیرمجموعه یادگیری ماشین استفاده‌شده است. این موضوع یک مسئله چند متغیره و یک مجموعه هدف بود که مقدار انتشار CO2 برای 5 سال آینده (5 سال بعد از سال 2018) پیش‌بینی و در انتها برای راستی آزمایی پیش‌بینی‌ها مقدار پیش‌بینی سال‌های 2019 و 2020 با CO2 واقعی این سال‌ ها مقایسه شد. نتایج به‌دست‌آمده برای هر 6 گروه مورد آزمایش نشان می‌دهد که مقدار انتشار CO2 در ایران برای سالیان آینده یک روند صعودی را در پی خواهد داشت و برای سال 2023 مقدار انتشار CO2 به محدوده 850 الی 900 میلیون تن خواهد رسید که می‌تواند یک فاجعه زیست‌محیطی و خطری برای انسان‌ها باشد. لذا پیشنهاد می‌شود دولت از یک برنامه بلندمدت با تأکید بر گروه‌های مهم، فرهنگ‌سازی در جامعه و وضع قوانین خاص‌تر برای کنترل مقدار انتشار CO2 استفاده نماید.

کلیدواژه‌ها


  1. Baloch, M. A., Khan, S. U. D., Ulucak, Z. Ş. & Ahmad, A., 2020. Analyzing the relationship between poverty, income inequality, and CO2 emission in Sub-Saharan African countries. Science of the Total Environment, 740, 139867.
  2. Bamisile, O., Obiora, S., Huang, Q., Yimen, N., Idriss, I. A., Cai, D. & Dagbasi, M. 2021. Impact of economic development on CO2 emission in Africa; the role of BEVs and hydrogen production in renewable energy integration. International Journal of Hydrogen Energy, 46, 2755-2773.
  3. Cai, Y., Sam, C.Y. & Chang, T. 2018. Nexus between clean energy consumption, economic growth and CO2 emissions. Journal of cleaner production, 182, 1001-1011.
  4. Cheikh, N.B., Zaied Y.B. & Chevallier, J. 2021. On the nonlinear relationship between energy use and CO2 emissions within an EKC framework: Evidence from   smooth transition regression in the MENA region. Research in International Business and Finance, 55, 101331.
  5. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. & Bengio, Y. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv: 1406.1078.
  6. Chong, C.H., Tan, W.X., Ting, Z.J. Liu, P., Ma, L., Li, Z. & Ni, W. 2019. The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis. Renewable and Sustainable Energy Reviews, 115, 109356.
  7. Dai, S., Niu, D. & Han, Y. 2018. Forecasting of energy-related CO2 emissions in China based on GM (1, 1) and least squares support vector machine optimized by modified shuffled frog leaping algorithm for sustainability. Sustainability, 10, 958.
  8. de Souza Mendonca, A.K., Barni, G.D. A.C., Moro, M.F., Bornia, A.C., Kupek, E. & Fernandes, L. 2020. Hierarchical modeling of the 50 largest economies to verify the impact of GDP, population and renewable energy generation in CO2 emissions. Sustainable Production and Consumption, 22, 58-67.
  9. Dechter, R. 1986. Learning while searching in constraint-satisfaction problems.
  10. Gifford, R. 1992. Interaction of carbon dioxide with growth-limiting environmental factors in vegetation productivity: implications for the global carbon cycle. In Advances in Bioclimatology 1, 24-58. Springer.
  11. Hdom, H.A. & Fuinhas, J.A. 2020. Energy production and trade openness: Assessing economic growth, CO2 emissions and the applicability of the cointegration analysis. Energy Strategy Reviews, 30, 100488.
  12. Hochreiter, S. Schmidhuber, J. 1997. “Long Short-Term Memory”. Neural Computation, 9.
  13. Hochreiter, S., Bengio, Y., Frasconi, P. & Schmidhuber, J. 2001. Gradient flow in recurrent nets: the difficulty of learning long-term dependenc ies. A field guide to dynamical recurrent neural networks. IEEE Press.
  14. Hoffmann, C. 2020. A power development planning for vietnam under the CO2 emission reduction targets. Energy Reports, 6, 19-24.
  15. Hong, C., Zhang, Q., Zhang, Y., Davis, S.J., Tong, D., Zheng, Y., Liu, Z., Guan, D., He, K. & Schellnhuber, H.J. 2019. Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences, 116, 17193-17200.
  16. Hosseini, S.M., Saifoddin, A., Shirmohammadi, R. & Aslani, A. 2019. Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Reports, 5, 619-631.
  17. Hu, M., Li, R., You, W., Liu, Y. & Lee, C.C. 2020. Spatiotemporal evolution of decoupling and driving forces of CO2 emissions on economic growth along the Belt and Road. Journal of Cleaner Production, 277, 123272.
  18. Hubel, D. & Wiesel. T. 2020. 8. Receptive fields of single neurones in the cat’s striate cortex. In Brain Physiology and Psychology, 129-150. University of California Press.
  19. Ivakhnenko, A.G.E., Ivakhnenko, A.G., Lapa, V.G.E. & Lapa., V.G.E. 1967. Cybernetics and forecasting techniques. American Elsevier Publishing Company.
  20. Kang, M., Zhao, W., Jia, L. & Liu, Y. 2020. Balancing carbon emission reductions and social economic development for sustainable development: Experience from 24 countries. Chinese Geographical Science, 30, 379-396.
  21. Le, T.H., Le, H.C. & Taghizadeh-Hesary, F. 2020. Does financial inclusion impact CO2 emissions? Evidence from Asia. Finance Research Letters, 34, 101451.
  22. Li, G., Zakari, A. & Tawiah, V. 2020. Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives. Resources Policy, 68, 101769.
  23. Liu, Q., Wang, S., Zhang, W., Li, J. & Kong, Y. 2019. Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives. Applied Energy, 236, 163-171.
  24. Mikayilov, J.I., Galeotti, M. & Hasanov, F.J. 2018. The impact of economic growth on CO2 emissions in Azerbaijan. Journal of cleaner production, 197, 1558-1572.
  25. Mohmmed, A., Li, Z., Arowolo, A.O., Su, H., Deng, X., Najmuddin, O. & Zhang, Y. 2019. Driving factors of CO2 emissions and nexus with economic growth, development and human health in the Top Ten emitting countries. Resources, Conservation and Recycling, 148, 157-169.
  26. Muhammad, B. 2019. Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries. Energy, 179, 232-245.
  27. Pata, U.K. 2018. Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks. Journal of Cleaner Production, 187, 770-779.
  28. Pluhar, Z.F., Piko, B.F., Kovacs, S. & Uzzoli, A. 2009. “Air pollution is bad for my health”: Hungarian children's knowledge of the role of environment in health and disease. Health & place, 15, 239-246.
  29. Romer, P.M. 1990. Endogenous technological change. Journal of Political Economy.
  30. Rumethart, D. 1986. Learning representations by back-propagating errors. Nature, 323, 533-536.
  31. Russell, S. & Norvig, P. 2002. Artificial intelligence: a modern approach.
  32. Salahuddin, M., Alam, K., Ozturk, I. & Sohag, K. 2018. The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait. Renewable and Sustainable Energy Reviews, 81, 2002-2010.
  33. Samuel, A.L. 1959. Some studies in machine learning using the game of checkers. IBM Journal of research and development, 3, 210-229.
  34. Shahbaz, M., Solarin, S.A., Mahmood, H. & Arouri, M. 2013. Does financial development reduce CO2 emissions in Malaysian economy? A time series analysis. Economic Modelling, 35, 145-152.
  35. Taylor, G.W. & Hinton, G.E. 2009. Factored conditional restricted Boltzmann machines for modeling motion style. In Proceedings of the 26th annual international conference on machine learning, 1025-1032.
  36. Wang, R., Mirza, N., Vasbieva, D.G., Abbas, Q. & Xiong, D. 2020. The nexus of carbon emissions, financial development, renewable energy consumption, and technological innovation: what should be the priorities in light of COP 21 Agreements? Journal of Environmental Management, 271, 111027.
  37. Wasserman, P.D. & Schwartz, T. 1988. Neural networks. II. What are they and why is everybody so interested in them now? IEEE expert, 3, 10-15.
  38. Wilson, A.M., Salloway, J.C., Wake, C.P. & Kelly, T. 2004. Air pollution and the demand for hospital services: a review. Environment International, 30, 1109-1118.
  39. Xia, F., Zhang, X., Cai, T., Wu, S. & Zhao, D. 2020. Identification of key industries of industrial sector with energy-related CO2 emissions and analysis of their potential for energy conservation and emission reduction in Xinjiang, China. Science of the total environment, 708, 134587.
  40. Xie, X., Weng, Y. & Cai, W. 2018. Co-benefits of CO2 mitigation for NOX emission reduction: A research based on the DICE model. Sustainability, 10, 1109.
  41. Zubair, A.O., Samad A.R.A. & Dankumo, A.M. 2020. Does gross domestic income, trade integration, FDI inflows, GDP, and capital reduces CO2 emissions? An empirical evidence from Nigeria. Current Research in Environmental Sustainability, 2, 100009.