سمیت نانوذرات مبتنی بر اکسیدگرافن در مقابل ریزجلبک Chaetoceros muelleri

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه زیست شناسی دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

3 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

4 پژوهشکده اکولوژی خلیج فارس و دریای عمان، مؤسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و تزویج کشاورزی، بندرعباس، ایران

چکیده

تقاضای روزافزون برای استفاده از فناوری نانو در سال‌های اخیر منجر به انتشار نانومواد در محیط‌زیست شده است. هدف از مطالعه حاضر، سنتز نانوذرات مبتنی بر اکسیدگرافن با استفاده از عصاره آبی جلبک دریایی سبز و ارزیابی سمیت آن‌ها در مقابل ریزجلبک Chaetoceros muelleri به عنوان یک خوراک زنده مهم در پرورش آبزیان است. در مطالعه آزمایشگاهی حاضر، ابتدا فرایند سنتز زیستی نانوذرات گرافن با استفاده از عصاره آبی جلبک سبز Ulva flexuosa انجام شد و در ادامه ارزیابی فعالیت ضدجلبکی و تعیین میزان رنگدانه‌های فتوسنتزی و پروتئین ریزجلبک صورت پذیرفت. نتایج مربوط به آنالیزهای مشخصه‌یابی، احیا اکسیدگرافن به کمک عصاره آبی جلبک سبز U. flexuosa و تبدیل آن به گرافن را تأیید کرد. ارزیابی فعالیت ضدجلبکی نمونه‌های مورد مطالعه نشان داد که اکسیدگرافن احیا شده دارای فعالیت ضدجلبکی بالاتری نسبت به اکسیدگرافن است. هم­چنین نتایج نشان داد که با افزایش غلظت نانوذرات سنتز شده میزان رنگدانه‌های فتوسنتزی و پروتئین کاهش یافت. اثرات سمی نانوذرات آزاد شده می‌تواند به ذخایر C. muelleri به عنوان یک خوراک زنده مهم در پرورش آبزیان آسیب برساند.

کلیدواژه‌ها


  1. Abu-Khudir, R., Ismail, G.A., Diab, T. 2021. Antimicrobial, antioxidant, and anti-tumor activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast. Nutrition and cancer. Vol.73, No. 5, pp: 829-844.
  2. Ahmad, S., Ahmad, A., Khan, S., Ahmad, S., Khan, I., Zada, S., Fu, P. 2019. Algal extracts based biogenic synthesis of reduced graphene oxides (rGO) with enhanced heavy metals adsorption capability. Journal of Industrial and Engineering Chemistry. Vol.72, No.2, pp: 117-124.
  3. Ahmad, A., Senapati, S., Khan, M.I., Kumar, R., Sastry, M. 2003. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir. Vol.19, No. 8, pp: 3550-3553.
  4. Bhagavathy, S., Sumathi, P., Bell, I.J.S. 2011. Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine. Vol.1, No. 1, pp: S1-S7.
  5. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. Vol.72, No. 1-2, pp: 248-254.
  6. Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., Zhang, J. 2014. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy & Environmental Science. Vol.7, No. 5, pp: 1564-1596.
  7. Das, K., Roychoudhury, A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in environmental science. Vol.2, No.2, pp: 53.
  8. Deng, X.Y., Cheng, J., Hu, X.L., Wang, L., Li, D., Gao, K. 2017. Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment Vol.57, No. 5, pp: 96-87.
  9. Dong, Z., Liu, Y., Duan, L., Bekele, D., Naidu, R. 2015. Uncertainties in human health risk assessment of environmental contaminants: a review and perspective. Environment international. Vol.85, No.3, pp: 120-132.
  10. Faria, A.F., Martinez, D.S.T., Moraes, A.C., Maia da Costa, M.E., Barros, E.B., Souza Filho, A.G., Paula, A.J., Alves, O.L. 2012. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chemistry of Materials. Vol.24, No. 21, pp: 4080-4087.
  11. Fazelian, N., Movafeghi, A., Yousefzadi, M., Rahimzadeh, M. 2019. Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environmental Science and Pollution Research. Vol.26, No. 17, pp: 17499-17511.
  12. Fazelian, N., Yousefzadi, M., Movafeghi, A. 2020. Algal response to metal oxide nanoparticles: analysis of growth, protein content, and fatty acid composition. BioEnergy Research. Vol.13, No. 3,pp: 944-954.
  13. Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., Sun, Y. 2011. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere. Vol.83, No. 4, pp: 510-516.
  14. Goodwin Jr, D.G., Adeleye, A.S., Sung, L., Ho, K.T., Burgess, R.M., Petersen, E.J. 2018. Detection and quantification of graphene-family nanomaterials in the environment. Environmental science & technology. Vol.52, No. 8, pp: 4491-4513.
  15. Guilger-Casagrande, M., Lima, R.d. 2019. Synthesis of silver nanoparticles mediated by fungi: a review. Frontiers in bioengineering and biotechnology. Vol.7, No.2, pp: 287.
  16. Guillard, R.R., Ryther, J.H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian journal of microbiology. Vol.8, No. 2, pp: 229-239.
  17. Hashmi, A., Singh, A., Khan, A.A.P., Asiri, A.M. 2020. Novel and green reduction of graphene oxide by Capsicum annuum: its photo catalytic activity. Journal of Natural Fibers: Vol.34, No.4, pp: 1-16.
  18. Hou, J., Wang, L., Wang, C., Zhang, S., Liu, H., Li, S., Wang, X. 2019. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. Journal of environmental sciences. Vol.75, No.2, pp: 40-53.
  19. Hu, J., Wang, J., Liu, S., Zhang, Z., Zhang, H., Cai, X., Pan, J., Liu, J. 2018. Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana. Journal of environmental sciences. Vol.66, No.3, pp: 208-215.
  20. Huang, Y., Liang, J., Chen, Y. 2012. An overview of the applications of graphene‐based materials in supercapacitors. small. Vol.8, No. 12, pp: 1805-1834.
  21. Ismail, Z. 2019. Green reduction of graphene oxide by plant extracts: a short review. Ceramics International. Vol.45, No. 18, pp: 23857-23868.
  22. Jeffrey, S.t., Humphrey, G. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen. Vol.167, No. 2, pp: 191-194.
  23. Jeon, E.K., Seo, E., Lee, E., Lee, W., Um, M.K., Kim, B.S. 2013. Mussel-inspired green synthesis of silver nanoparticles on graphene oxide nanosheets for enhanced catalytic applications. Chemical Communications. Vol.49, No. 33, pp: 3392-3394.
  24. Ji, J., Long, Z., Lin, D. 2011. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal. Vol.170, No. 2-3, pp: 525-530.
  25. Khanam, P.N., Hasan, A. 2019. Biosynthesis and characterization of graphene by using non-toxic reducing agent from Allium Cepa extract: Anti-bacterial properties. International journal of biological macromolecules. Vol.126, No.3, pp: 151-158.
  26. Lei, C., Zhang, L., Yang, K., Zhu, L., Lin, D. 2016. Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution. Vol.218, No. 4, pp: 505-512.
  27. Li, X., Li, S., Bai, Q., Sui, N., Zhu, Z. 2020. Gold nanoclusters decorated amine-functionalized graphene oxide nanosheets for capture, oxidative stress, and photothermal destruction of bacteria. Colloids and Surfaces B: Biointerfaces. Vol.196, No. 3, pp: 111313.
  28. Li, F., Liang, Z., Zheng, X., Zhao, W., Wu, M., Wang, Z. 2015. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology. Vol.158, No. 3, pp: 1-13.
  29. Lin, S., Ruan, J., Wang, S. 2019. Biosynthesized of reduced graphene oxide nanosheets and its loading with paclitaxel for their anti cancer effect for treatment of lung cancer. Journal of Photochemistry and Photobiology B: Biology. Vol.191, No. 3, pp: 13-17.
  30. Liu, Y., Li, Y., Yang, Y., Wen, Y., Wang, M. 2011. Reduction of graphene oxide by thiourea. Journal of nanoscience and nanotechnology. Vol.11, No. 11, pp: 10082-10086.
  31. Mačić, V., Antolić, B., Žuljević, A. 2021. A Checklist of the Benthic Marine Macroalgae in Montenegrin Coastal Waters. The Montenegrin Adriatic Coast: Vol.21, No. 3, pp: 232-246.
  32. Malina, T., Maršálková, E., Holá, K., Tuček, J., Scheibe, M., Zbořil, R., Maršálek, B. 2019. Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon. Vol.155, No. 4, pp: 386-396.
  33. Manjari, G. 2018. Green synthesis of silver and copper nanoparticles using Aglaia elaeagnoidea and its catalytic application on dye degradation. Department of Ecology and Environmental Sciences, Pondicherry University p.
  34. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M. 2010. Improved synthesis of graphene oxide. ACS nano. Vol.4, No. 8, pp: 4806-4814.
  35. Martín-de-Lucía, I., Campos-Mañas, M.C., Agüera, A., Leganés, F., Fernández-Piñas, F., Rosal, R. 2018. Combined toxicity of graphene oxide and wastewater to the green alga Chlamydomonas reinhardtii. Environmental Science: Nano. Vol.5, No. 7, pp: 1729-1744.
  36. Mhamane, D., Ramadan, W., Fawzy, M., Rana, A., Dubey, M., Rode, C., Lefez, B., Hannoyer, B., Ogale, S. 2011. From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry. Vol.13, No. 8, pp: 1990-1996.
  37. Middepogu, A., Hou, J., Gao, X., Lin, D. 2018. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and environmental safety. Vol.161, No. 3, pp: 497-506.
  38. Mousavi-Kouhi, S.M., Beyk-Khormizi, A., Mohammadzadeh, V., Ashna, M., Es-haghi, A., Mashreghi, M., Hashemzadeh, V., Mozafarri, H., Nadaf, M., Taghavizadeh Yazdi, M.E. 2021. Biological synthesis and characterization of gold nanoparticles using Verbascum speciosum Schrad. and cytotoxicity properties toward HepG2 cancer cell line. Research on Chemical Intermediates: Vol.24, No. 2, pp: 1-12.
  39. Nazari, F., Jafarirad, S., Movafeghi, A., Kosari-Nasab, M., Kazemi, E.M. 2020. Toxicity of microwave-synthesized silver-reduced graphene oxide nanocomposites to the microalga Chlorella vulgaris: Comparison with the hydrothermal method synthesized counterparts. Journal of Environmental Science and Health, Part A. Vol.55, No. 6, pp: 639-649.
  40. Ott, M., Gogvadze, V., Orrenius, S., Zhivotovsky, B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis. Vol.12, No. 5, pp: 913-922.
  41. Ou, L., Song, B., Liang, H., Liu, J., Feng, X., Deng, B., Sun, T., Shao, L. 2016. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and fibre toxicology. Vol.13, No. 1, pp: 1-24.
  42. Oukarroum, A., Bras, S., Perreault, F., Popovic, R. 2012. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and environmental safety. Vol.78, No.3, pp: 80-85.
  43. Parida, A.K., Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety. Vol. 60, No. 3, pp: 324-349.
  44. Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S. 2011. Hydrazine-reduction of graphite-and graphene oxide. Carbon. Vol.49, No. 9, pp: 3019-3023.
  45. Park, S., Ruoff, R.S. 2009. Chemical methods for the production of graphenes. Nature nanotechnology. Vol.4, No. 4, pp: 217-224.
  46. Parmar, T.K., Rawtani, D., Agrawal, Y. 2016. Bioindicators: the natural indicator of environmental pollution. Frontiers in life science. Vol.9, No. 2, pp: 110-118.
  47. Peña-Bahamonde, J., Nguyen, H.N., Fanourakis, S.K., Rodrigues, D.F. 2018. Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of nanobiotechnology. Vol.16, No. 1, pp: 1-17.
  48. Raghupathi, K.R., Koodali, R.T., Manna, A.C. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. Vol.27, No. 7, pp: 4020-4028.
  49. Ramanathan, S., Elanthamilan, E., Obadiah, A., Durairaj, A., Merlin, J.P., Ramasundaram, S., Vasanthkumar, S. 2017. Aloe vera (L.) Burm. f. extract reduced graphene oxide for supercapacitor application. Journal of Materials Science: Materials in Electronics. Vol.28, No. 22, pp: 16648-16657.
  50. Rosi, N.L., Giljohann, D.A., Thaxton, C.S., Lytton-Jean, A.K., Han, M.S., Mirkin, C.A. 2006. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. Vol.312, No. 57, pp: 1027-1036.
  51. Salas, E.C., Sun, Z., Lüttge, A., Tour, J.M. 2010. Reduction of graphene oxide via bacterial respiration. ACS nano. Vol.4, No. 8, pp: 4852-4856.
  52. Schwab, F., Bucheli, T.D., Lukhele, L.P., Magrez, A., Nowack, B., Sigg, L., Knauer, K. 2011. Are carbon nanotube effects on green algae caused by shading and agglomeration? Environmental science & technology. Vol.45, No. 14, pp: 6136-6144.
  53. Sendra, M., Yeste, M.P., Gatica, J.M., Moreno-Garrido, I., Blasco, J. 2017. Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere. Vol.179, No. 3, pp: 279-289.
  54. Sharma, M., Mondal, D., Das, A.K., Prasad, K. 2014. Production of partially reduced graphene oxide nanosheets using a seaweed sap. RSC Advances. Vol.4, No. 110, pp: 64583-64588.
  55. Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y. 2009. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials. Vol.19, No. 12, pp: 1987-1992.
  56. Siedlewicz, G., Żak, A., Sharma, L., Kosakowska, A., Pazdro, K. 2020. Effects of oxytetracycline on growth and chlorophyll a fluorescence in green algae (Chlorella vulgaris), diatom (Phaeodactylum tricornutum) and cyanobacteria (Microcystis aeruginosa and Nodularia spumigena). Oceanologia. Vol.62, No. 2, pp: 214-225.
  57. Singh, J., Kumar, V., Kim, K.-H., Rawat, M. 2019. Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes. Environmental Research. Vol.177, No. 3, pp: 108569.
  58. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S. 2007. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. Vol.45, No. 7, pp: 1558-1565.
  59. Tang, X.Z., Li, X., Cao, Z., Yang, J., Wang, H., Pu, X., Yu, Z.Z. 2013. Synthesis of graphene decorated with silver nanoparticles by simultaneous reduction of graphene oxide and silver ions with glucose. Carbon. Vol.59, No. 3, pp: 93-99.
  60. Tayemeh, M.B., Esmailbeigi, M., Shirdel, I., Joo, H.S., Johari, S.A., Banan, A., Nourani, H., Mashhadi, H., Jami, M.J., Tabarrok, M. 2020. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. Chemosphere. Vol.238, No.3, pp: 124576.
  61. Tsekhmistrenko, S., Bityutskyy, V., Tsekhmistrenko, O., Horalskyi, L., Tymoshok, N., Spivak, M. 2020. Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity. Vol.28, No. 1, pp: 9-17.
  62. Wang, Y., Shi, Z., Yin, J. 2011. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS applied materials & interfaces. Vol.3, No. 4, pp: 1127-1133.
  63. Wang, L., Zi, J., Xu, R., Hilt, S., Hou, X., Chang, X. 2017. Allelopathic effects of Microcystis aeruginosa on green algae and a diatom: evidence from exudates addition and co-culturing. Harmful algae. Vol.61, No. 3, pp: 56-62.
  64. Yang, B., Liu, Z., Guo, Z., Zhang, W., Wan, M., Qin, X., Zhong, H. 2014. In situ green synthesis of silver–graphene oxide nanocomposites by using tryptophan as a reducing and stabilizing agent and their application in SERS. Applied Surface Science. Vol.316, No. 2, pp: 22-27.
  65. Yin, J., Dong, Z., Liu, Y., Wang, H., Li, A., Zhuo, Z., Feng, W., Fan, W. 2020a. Toxicity of reduced graphene oxide modified by metals in microalgae: Effect of the surface properties of algal cells and nanomaterials. Carbon. Vol.169, No.4, pp: 182-192.
  66. Yin, J., Fan, W., Du, J., Feng, W., Dong, Z., Liu, Y., Zhou, T. 2020b. The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom. Environmental Pollution. Vol.260, No. 3, pp: 113847.
  67. Yosri, N., Khalifa, S.A., Guo, Z., Xu, B., Zou, X., El-Seedi, H.R. 2021. Marine organisms: Pioneer natural sources of polysaccharides/proteins for green synthesis of nanoparticles and their potential applications. International journal of biological macromolecules. Vol.193, No. 4, pp: 179-198.
  68. Yuan, Y., Zhang, J., Fan, J., Clark, J., Shen, P., Li, Y., Zhang, C. 2018. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Research International. Vol.113, No. 4, pp: 288-297.
  69. Zhang, M., Yin, B.C., Wang, X.F., Ye, B.C. 2011. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chemical Communications. Vol.47, No. 8, pp: 2399-2401.
  70. Zhong, L., Yun, K. 2015. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties. International journal of nanomedicine. Vol.10, No. 3, pp: 79.
  71. Zou, F., Zhou, H., Jeong, D.Y., Kwon, J., Eom, S.U., Park, T.J., Hong, S.W., Lee, J. 2017. Wrinkled surface-mediated antibacterial activity of graphene oxide nanosheets. ACS applied materials & interfaces. Vol.9, No. 2, pp: 1343-1351.